Ptolemy diagrams and torsion pairs in the cluster categories of Dynkin type D
نویسندگان
چکیده
منابع مشابه
Ptolemy Diagrams and Torsion Pairs in the Cluster Categories of Dynkin Type D
We give a complete classification of torsion pairs in the cluster category of Dynkin type Dn, via a bijection to new combinatorial objects called Ptolemy diagrams of type D. For the latter we give along the way different combinatorial descriptions. One of these allows us to count the number of torsion pairs in the cluster category of type Dn by providing their generating function explicitly.
متن کاملPtolemy diagrams and torsion pairs in the cluster category of Dynkin type An
We give a complete classification of torsion pairs in the cluster category of Dynkin type An. Along the way we give a new combinatorial description of Ptolemy diagrams, an infinite version of which was introduced by Ng (1005.4364v1 [math.RT], 2010). This allows us to count the number of torsion pairs in the cluster category of type An. We also count torsion pairs up to Auslander–Reiten translat...
متن کاملTorsion Pairs in Triangulated Categories
We study the properties of torsion pairs in triangulated category by introducing the notions of d-Ext-projectivity and d-Ext-injectivity. In terms of -mutation of torsion pairs, we investigate the properties of torsion pairs in triangulated category C D U Z D Z D
متن کاملTorsion Pairs in Cluster Tubes
We give a complete classification of torsion pairs in the cluster categories associated to tubes of finite rank. The classification is in terms of combinatorial objects called Ptolemy diagrams which already appeared in our earlier work on torsion pairs in cluster categories of Dynkin type A. As a consequence of our classification we establish closed formulae enumerating the torsion pairs in clu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2013
ISSN: 0196-8858
DOI: 10.1016/j.aam.2013.07.005